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Carr Fire, Shasta County, California, August 2018Key Message 1

Increasing Risks from Air Pollution 
More than 100 million people in the United States live in communities where air pollution 
exceeds health-based air quality standards. Unless counteracting efforts to improve 
air quality are implemented, climate change will worsen existing air pollution levels. 
This worsened air pollution would increase the incidence of adverse respiratory and 
cardiovascular health effects, including premature death. Increased air pollution would 
also have other environmental consequences, including reduced visibility and damage to 
agricultural crops and forests.

Key Message 2

Increasing Impacts of Wildfires
Wildfire smoke degrades air quality, increasing the health risks to tens of millions of 
people in the United States. More frequent and severe wildfires due to climate change 
would further diminish air quality, increase incidences of respiratory illness from 
exposure to wildfire smoke, impair visibility, and disrupt outdoor recreational activities.

Key Message 3

Increases in Airborne Allergen Exposure
The frequency and severity of allergic illnesses, including asthma and hay fever, are 
likely to increase as a result of a changing climate. Earlier spring arrival, warmer 
temperatures, changes in precipitation, and higher carbon dioxide concentrations can 
increase exposure to airborne pollen allergens. 
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Key Message 4

Co-Benefits of Greenhouse Gas Mitigation
Many emission sources of greenhouse gases also emit air pollutants that harm human 
health. Controlling these common emission sources would both mitigate climate change 
and have immediate benefits for air quality and human health. Because methane is both 
a greenhouse gas and an ozone precursor, reductions of methane emissions have the 
potential to simultaneously mitigate climate change and improve air quality.

Executive Summary
Unless offset by additional emissions reduc-
tions of ozone precursor emissions, there 
is high confidence that climate change will 
increase ozone levels over most of the United 
States, particularly over already polluted areas, 
thereby worsening the detrimental health 
and environmental effects due to ozone. The 
climate penalty results from changes in local 
weather conditions, including temperature and 
atmospheric circulation patterns, as well as 
changes in ozone precursor emissions that are 
influenced by meteorology. Climate change has 
already had an influence on ozone concentra-
tions over the United States, offsetting some 
of the expected ozone benefit from reduced 
precursor emissions. The magnitude of the 
climate penalty over the United States could be 
reduced by mitigating climate change.

Climatic changes, including warmer springs, 
longer summer dry seasons, and drier soils 
and vegetation, have already lengthened the 
wildfire season and increased the frequency 
of large wildfires. Exposure to wildfire smoke 
increases the risk of respiratory disease, 
resulting in adverse impacts to human health. 
Longer fire seasons and increases in the 
number of large fires would impair both human 
health and visibility. 

Climate change, specifically rising tempera-
tures and increased carbon dioxide (CO2) 
concentrations, can influence plant-based 
allergens, hay fever, and asthma in three ways: 
by increasing the duration of the pollen season, 
by increasing the amount of pollen produced 
by plants, and by altering the degree of allergic 
reactions to the pollen.

The energy sector, which includes energy 
production, conversion, and use, accounts for 
84% of greenhouse gas (GHG) emissions in 
the United States as well as 80% of emissions 
of nitrogen oxides (NOx) and 96% of sulfur 
dioxide, the major precursor of sulfate aerosol. 
In addition to reducing future warming, 
reductions in GHG emissions often result in 
co-benefits (other positive effects, such as 
improved air quality) and possibly some neg-
ative effects (disbenefits) (Ch. 29: Mitigation). 
Specifically, mitigating GHG emissions can 
lower emissions of particulate matter (PM), 
ozone and PM precursors, and other hazardous 
pollutants, reducing the risks to human health 
from air pollution.
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Projected Changes in Summer Season Ozone

The maps show projected changes in summer averages of the maximum daily 8-hour ozone concentration (as compared to the 
1995–2005 average). Summertime ozone is projected to change non-uniformly across the United States based on multiyear 
simulations from the Community Multiscale Air Quality (CMAQ) modeling system. Those changes are amplified under the higher 
scenario (RCP8.5) compared with the lower scenario (RCP4.5), as well as at 2090 compared with 2050. Data are not available 
for Alaska, Hawai‘i, U.S.-Affiliated Pacific Islands, and the U.S. Caribbean. From Figure 13.2 (Source: adapted from EPA 20171).
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State of the Sector

Air quality is important for human health, 
vegetation, and crops as well as aesthetic 
considerations (such as visibility) that affect 
appreciation of the natural beauty of national 
parks and other outdoor spaces. Many of 
the processes that determine air quality 
are affected by weather (Figure 13.1). For 
example, hot, sunny days can increase ozone 
levels, while stagnant weather conditions can 
produce high concentrations of both ozone 
and particulate matter (PM). Ozone and PM 
are air pollutants that adversely affect human 
health and are monitored and regulated 
with national standards. Temperature, wind 
patterns, cloud cover, and precipitation, as 
well as the amounts and types of pollutants 
emitted into the air from human activities and 
natural sources, all affect air quality (Figure 
13.1). Thus, climate-driven changes in weather, 
human activity, and natural emissions are all 
expected to impact future air quality across the 
United States. 

These climate effects on air quality are not 
expected to occur uniformly at all locations. 
For example, as discussed in Chapter 2: 
Climate, precipitation is projected to increase 
in some regions of the country and decrease 
in other regions. Regions that experience 
excessive periods of drought and higher 
temperatures will have increased frequency of 
wildfires and more windblown dust from soils. 
At the same time, changes to temperatures and 
rainfall affect the types of crops that can be 
grown (Ch. 10: Ag & Rural) and the length of the 
growing season, the application of fertilizers 
and pesticides to crops, and ensuing transport 
and fate of those chemicals into the air, water, 
and soil. In the future, climate change is 
expected to alter the demand for heating and 
cooling of indoor spaces due to changes in 
temperatures. The resulting shift in fuel types 
and amounts used will modify the amount and 

composition of air pollutants emitted. Climate 
change can also increase the duration of the 
pollen season and the amount of pollen at 
some locations, as well as worsen respiratory 
health impacts due to pollen exposure. Despite 
the potential variability in regional impacts of 
climate change, there is evidence that climate 
change will increase the risk of unhealthy air 
quality in the future across the Nation in the 
absence of further air pollution control efforts 
(for other impacts of climate change on health, 
see Ch. 14: Human Health).

Since people spend most of their time inside 
buildings, indoor air quality is important for 
human health. Indoor air pollutants may come 
from interior sources or may be transported 
into buildings with outdoor air. If there are 
changes in airborne pollutants of outdoor 
origin, such as ozone, pollen, mold, and PM2.5 
(particulate matter less than 2.5 micrometers 
in diameter), there will be changes in indoor 
exposures to these contaminants.2,3

There is robust evidence from models and 
observations that climate change is worsening 
ozone pollution. The net effect of climate 
change on PM pollution is less certain than for 
ozone, but increases in smoke from wildfires 
and windblown dust from regions affected 
by drought are expected. The complex inter-
actions of natural variability with changes 
in climate and emissions pose a significant 
challenge for air quality management. Some 
approaches to mitigating climate change 
could result in large near-term co-benefits 
for air quality.
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Pathways by Which Climate Change Will Influence Air Pollution

Figure 13.1: Climate change will alter (black bold text) chemical and physical interactions that create, remove, and transport air 
pollution (red text and gray arrows). Human activities and natural processes release precursors for ground-level ozone (O3) and 
particulate matter with a diameter less than 2.5 micrometers (PM2.5), including methane (CH4), carbon monoxide (CO), nitrogen 
oxides (NOx), non-methane volatile organic compounds (NMVOCs), sulfur dioxide (SO2), ammonia (NH3), organic carbon (OC), 
black carbon (BC), and dimethyl sulfide (DMS); and direct atmospheric pollutants, including mineral dust, sea salt, pollen, 
spores, and food particles. Source: adapted from Fiore et al. 2015.4 Reprinted by permission of the publisher (Taylor & Francis 
Ltd., http://www.tandfonline.com).

Air Pollution Health Effects
Ground-level ozone and particulate matter are 
common air pollutants that pose a serious risk to 
human health and the environment.5,6 Short- and 
long-term exposure to these pollutants results in 
adverse respiratory and cardiovascular effects,7 
including premature deaths,8 hospital and 
emergency room visits, aggravated asthma,3,9 and 
shortness of breath.10 Certain population groups, 
such as the elderly, children, and those with 

chronic illnesses, are especially susceptible to 
ozone and PM-related effects.11,12,13

A growing body of evidence indicates the harmful 
effects of short-term (i.e., daily) exposures to 
ground-level ozone vary with climate conditions, 
specifically temperature.14,15,16,17,18 For a given level 
of ozone, higher temperatures increase the risk of 
ozone-related premature death.14,19,20,21 However, 
the risk of premature death is likely to decrease 
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as the prevalence of air conditioning increases, as 
is expected to occur with rising temperatures.22 
The extent to which the growing use of air con-
ditioning will offset climate-induced increases in 
ozone-related premature death is unknown.

Ozone Air Quality
Ozone is not directly emitted but is formed in 
the atmosphere by reactions between nitrogen 
oxides (NOx) and volatile organic compounds 
(VOCs). Ozone concentrations depend on 
emissions of these two precursors as well 
as weather conditions such as temperature, 
humidity, cloud cover, and winds.3 These emis-
sions come from a variety of human sources, 
such as power plants and motor vehicles, 
and from natural sources, such as forests and 
wildfires (Figure 13.1). Additionally, ozone con-
centrations in one region may be influenced 
by the transport of either precursors or ozone 
itself from another region.23,24

Ozone levels in the United States are often 
highest in Southern California and the North-
east Corridor as well as around other large 
cities like Dallas, Houston, Denver, Phoenix, 
and Chicago,25 and during extended episodes of 
extreme heat and sunshine.26 Ozone air quality 
in the United States has improved dramatically 
over the past few decades due to NOx and VOC 
emissions control efforts, despite population 
and economic growth.27,28,29 Nationally, ozone 
concentrations have been reduced by 22% over 
the 1990 to 2016 period.29 Nonetheless, in 2015 
nearly 1 in 3 Americans were exposed to ozone 
values that exceeded the national standard 
determined by the U.S. Environmental Protec-
tion Agency (EPA) to be protective of human 
health.29 Adverse human health impacts asso-
ciated with exposure to ground-level ozone 
include premature death, respiratory hospital 
admissions, cases of aggravated asthma, lost 
days of school, and reduced productivity 
among outdoor workers.30,31,32 Ozone pollution 

can also damage crops and plant communities, 
including forests, by reducing photosynthesis.33

Due in part to air pollutant regulations driven 
by the Clean Air Act, NOx and VOC emissions 
from human sources should continue to 
decline over the next few decades.34 These 
emissions reductions are designed to reduce 
ozone concentrations so that polluted areas 
of the country meet air quality standards. 
However, climate change will also influence 
future levels of ozone in the United States by 
altering weather conditions and impacting 
emissions from human and natural sources. 
The prevailing evidence strongly suggests that 
climate change alone introduces a climate 
penalty (an increase in air pollution resulting 
from climate change35,36) for ozone over most of 
the United States from warmer temperatures 
and increases in natural emissions.3,4,37,38 This 
climate penalty will partially counteract the 
continued reductions in emissions of ozone 
precursors from human activities.

Particulate Matter 
Tiny liquid or solid particles suspended in the 
atmosphere are known as aerosols or partic-
ulate matter (PM). PM includes many different 
chemical components, such as sulfate, nitrate, 
organic and black carbon, mineral dust, and sea 
spray. Unlike ozone, PM can be either directly 
emitted or formed in the atmosphere. PM2.5 
refers to atmospheric PM with a diameter less 
than 2.5 micrometers. These particles are small 
enough to be inhaled deeply, and exposure 
to high concentrations can result in serious 
health impacts, including premature death, 
nonfatal heart attacks, and adverse birth out-
comes.5,39,40,41 PM2.5 concentrations vary greatly 
with daily weather conditions,42,43 depending 
particularly on wind speed (which affects the 
mixing of pollutants) and precipitation (which 
removes particles from the air).4 Concentra-
tions of PM2.5 build up during long periods of 
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low wind speeds, and they are reduced when 
weather fronts move air through a region.4

Wildfires not only emit gases that contribute 
to ozone formation44,45,46,47,48 but they also are a 
major source of PM, especially in the western 
United States during the summer49,50,51,52,53,54,55 
and in the Southeast48,56 (Ch. 6: Forests; Ch. 19: 
Southeast, Case Study “Prescribed Fire”; Ch. 
24: Northwest; Ch. 25: Southwest). Wildfire 
smoke can worsen air quality locally,57 with 
substantial public health impacts in regions 
with large populations near heavily forested 
areas.56,58,59,60,61 Exposure to wildfire smoke 
increases the incidence of respiratory illnesses, 
including asthma, chronic obstructive pul-
monary disease, bronchitis, and pneumonia.62 
Smoke can decrease visibility63 and can be 
transported hundreds of miles downwind, 
often crossing national boundaries.54,64,65,66,67,68,69

Climate change is expected to impact atmo-
spheric PM concentrations in numerous 
ways.38,70 Changing weather patterns, including 
increased stagnation,71,72 altered frequency of 
weather fronts,73,74 more frequent heavy rain 
events,43 changing emissions from vegeta-
tion75,76 and human sources,77 and increased 
evaporation of some aerosol components78 
will all affect PM concentrations. In addition, 
more frequent and longer droughts would 
lengthen the wildfire season79,80,81 and result in 
larger wildfires82,83 and increased dust emis-
sions in some areas.84 Projections of regional 
precipitation changes show considerable 
variation across models and thus remain highly 
uncertain.85 Accurately assessing how PM2.5 
concentrations will respond to the changing 
climate is difficult due to these complex and 
highly spatially variable interactions. 

Key Message 1
Increasing Risks from Air Pollution

More than 100 million people in the 
United States live in communities where 
air pollution exceeds health-based air 
quality standards. Unless counteracting 
efforts to improve air quality are im-
plemented, climate change will worsen 
existing air pollution levels. This wors-
ened air pollution would increase the 
incidence of adverse respiratory and 
cardiovascular health effects, including 
premature death. Increased air pollution 
would also have other environmental 
consequences, including reduced 
visibility and damage to agricultural 
crops and forests. 

Unless offset by additional reductions of ozone 
precursor emissions, there is high confidence 
that climate change will increase ozone levels 
over most of the United States, particularly over 
already polluted areas,3,86 thereby worsening the 
detrimental health and environmental effects 
due to ozone. Although competing meteoro-
logical effects determine local ozone levels, 
temperature is often the largest single driver.87 
The climate penalty35,36 results from changes in 
local weather conditions, including temperature 
and atmospheric circulation patterns,4,88 as well 
as changes in ozone precursor emissions that 
are influenced by meteorology.75,76,77 Climate 
change has already had an influence on ozone 
concentrations over the United States, offset-
ting some of the expected ozone benefit from 
reduced precursor emissions.89,90 Assessments 
of climate change impacts on ozone trends 
are complicated by year-to-year changes in 
weather conditions91 and require multiple years 
of model information to estimate the potential 
range of effects.92 Besides being affected by 
climate change, future ozone levels in the 
United States will also be affected greatly by 
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domestic emissions of ozone precursors as well 
as by international emissions of ozone precur-
sors and global methane levels. Studies suggest 
that climate change will decrease the sensitivity 
of regional ozone air quality to interconti-
nental sources.93

PM2.5 accounts for most of the health impacts 
due to air pollution in the United States,94 and 
small changes in average concentrations have 
large implications for public health. Without 
consideration of climate effects, concentra-
tions of PM2.5 in the United States are projected 
to decline through 2040 due to ongoing emis-
sions control efforts.34 PM2.5 is highly sensitive 
to weather conditions, including temperature, 
humidity, wind speed, and rainfall. The effects 
of climate change on the timing, intensity, 
duration, and frequency of rainfall are highly 
uncertain, influencing both the removal of 
PM2.5 from air and the incidence of wildfires 
and their associated emissions. Accordingly, 
the net impact of climate-driven weather 
changes on PM2.5 concentrations is less certain 
than for ozone.3,4,43,70 However, some studies 
have indicated that even without considering 
increased wildfire frequency, climate change 
will cause a small but important increase in 
PM2.5 over North America.95,96 The impact of 
climate change on the PM2.5 contribution 
from intercontinental sources, which depends 

strongly on projected changes in precipitation, 
remains highly uncertain.24

The health impacts of climate-induced changes 
in air quality may be reduced by various adap-
tation measures. For example, as local author-
ities issue air quality alerts, people may reduce 
their exposure to air pollution by postponing 
outdoor activities and staying indoors (for 
further information on the role of adaptation in 
reducing climate-related health risks, see Ch. 
14: Human Health, KM 3). 

The magnitude of the climate penalty over the 
United States could be reduced by mitigating 
climate change.1,90,97 For example, Figure 13.2 
shows results from one study1 projecting the 
change in summertime ozone resulting from 
two different future scenarios (RCP8.5 and 
RCP4.5) (see the Scenario Products section of 
App. 3 for additional information about these 
scenarios) at 2050 and 2090, with human 
emissions of ozone precursors held constant. 
Due to climate change, ozone is projected to 
increase over a broad portion of the United 
States. Mitigating climate change globally (for 
instance, following RCP4.5 rather than RCP8.5) 
would reduce the impact on ozone, resulting 
in fewer adverse health effects, including 
500 fewer premature deaths per year due to 
ozone in 2090.1 
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Projected Changes in Summer Season Ozone

Figure 13.2: The maps show projected changes in summer averages of the maximum daily 8-hour ozone concentration (as 
compared to the 1995–2005 average). Summertime ozone is projected to change non-uniformly across the United States based 
on multiyear simulations from the Community Multiscale Air Quality (CMAQ) modeling system. Those changes are amplified 
under the higher scenario (RCP8.5) compared with the lower scenario (RCP4.5), as well as at 2090 compared with 2050. Data 
are not available for Alaska, Hawai‘i, U.S.-Affiliated Pacific Islands, and the U.S. Caribbean. Source: adapted from EPA 2017.1

Key Message 2
Increasing Impacts of Wildfires

Wildfire smoke degrades air quality, 
increasing the health risks to tens of 
millions of people in the United States. 
More frequent and severe wildfires due 
to climate change would further diminish 
air quality, increase incidences of respi-
ratory illness from exposure to wildfire 
smoke, impair visibility, and disrupt 
outdoor recreational activities.

Climatic changes, including warmer springs, 
longer summer dry seasons, and drier soils 
and vegetation, have already lengthened the 
wildfire season79,80,81,98 (Ch. 6: Forests) and 
increased the frequency of large wildfires.82,83 

Human-caused climate change is estimated 
to have doubled the area of forest burned in 
the western United States from 1984 to 2015.99 
Projections indicate that the wildfire frequency 
and burned area in North America will con-
tinue to increase over the 21st century due to 
climate change.100,101,102,103,104,105,106

Wildfires and prescribed fires contribute to 
ozone formation44,107 and are major sources of 
PM, together comprising about 40% of directly 
emitted PM2.5 in the United States in 2011.34 
Exposure to wildfire smoke increases the risk 
of respiratory disease and mortality.56,60,62 Lon-
ger fire seasons and increases in the number of 
large fires would impair both human health108 
and visibility.54,63 Wildfires are projected to 
become the principal driver of summertime 
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PM2.5 concentrations, offsetting even large 
reductions in emissions of PM2.5 precursors.54,109

Opportunities for outdoor recreational 
activities are also vulnerable to changes in 
the frequency and intensity of wildfires due 
to climate change. Climate change-induced 
increases in wildfire smoke events are likely to 
reduce the amount and quality of time spent 
in outdoor activities (Ch. 22: N. Great Plains, 
KM 3; Ch. 24: Northwest, KM 4). More accurate 
forecasting of smoke events may mitigate some 
of the negative effects through changes in 
timing of outdoor activities. 

Forests are actively managed, and the fre-
quency and severity of wildfire occurrence 
in the future will not be determined solely by 
climate factors. Humans affect fire activity in 
many ways, including increasing ignitions and 
conducting controlled burns and fire suppres-
sion.110,111 Forest management decisions may 
outweigh the impacts of climate change on 
both forest ecosystems and air quality.112 

Key Message 3
Increases in Airborne Allergen 
Exposure

The frequency and severity of allergic 
illnesses, including asthma and hay 
fever, are likely to increase as a result 
of a changing climate. Earlier spring 
arrival, warmer temperatures, changes in 
precipitation, and higher carbon dioxide 
concentrations can increase exposure to 
airborne pollen allergens. 

Climate change, specifically rising tempera-
tures and increased CO2 concentrations, can 
influence plant-based allergens, hay fever, 
and asthma in three ways: by increasing the 
duration of the pollen season, by increasing 
the amount of pollen produced by plants, 

and by altering the degree of allergic reac-
tions to pollen.

Seasonally, airborne allergen (aeroallergen) 
exposure in the United States begins with the 
release of tree pollen in the spring. Between 
the 1950s and the early 2000s, warming 
winters and earlier arrival of springs have 
resulted in earlier flowering of oak trees.113 
Projected increases in CO2 induce earlier and 
greater seasonal pollen production in pine 
trees114 and oak trees.115 For summer pollen 
producers, such as weeds and grasses, the 
effect of warming temperatures on earlier 
flowering is less evident. However, the allergen 
content of timothy grass pollen increases with 
concurrent increases in ozone and CO2.116 For 
common ragweed, the primary fall aeroaller-
gen, greenhouse studies simulating increased 
temperature and CO2 concentrations resulted 
in earlier flowering, greater floral numbers, 
increased pollen production, and enhanced 
allergen content of the pollen.117,118,119,120 Regional 
and continental studies indicate that ragweed 
growth and pollen production increase with 
urban-induced increases in temperature and 
CO2. Ragweed pollen season exposure varies 
as a function of latitude and delayed autumnal 
frosts in North America.119,121 In addition to 
pollen, aeroallergens are also generated by 
molds. Plants are often affected, since they can 
serve as hosts for fungi. For example, projected 
end-of-century CO2 concentrations would 
substantially increase the number of allergenic 
spores produced from timothy grass.122 

Although warming temperatures and rising CO2 
levels clearly increase aeroallergen prevalence, 
the link between exposure and health impacts 
is less well established. However, hay fever 
prevalence has been associated with exposure 
to annual and seasonal extreme heat events.123 
Furthermore, climate-induced changes in oak 
pollen are projected to increase the number of 
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asthma-related emergency department visits 
in the Northeast, Southwest, and Midwest.115 

Key Message 4

Co-Benefits of Greenhouse Gas 
Mitigation

Many emission sources of greenhouse 
gases also emit air pollutants that harm 
human health. Controlling these common 
emission sources would both mitigate 
climate change and have immediate ben-
efits for air quality and human health. 
Because methane is both a greenhouse 
gas and an ozone precursor, reductions 
of methane emissions have the poten-
tial to simultaneously mitigate climate 
change and improve air quality.

The energy sector, which includes energy 
production, conversion, and use, accounts for 
84% of greenhouse gas (GHG) emissions124 as 
well as 80% of emissions of NOx and 96% of 
sulfur dioxide, the major precursor of sulfate 
aerosol.125 In addition to reducing future 
warming, reductions in GHG emissions often 
result in co-benefits (other positive effects, 
such as improved air quality) and possibly 
some negative effects (disbenefits) (Ch. 29: 
Mitigation). Specifically, mitigating GHGs can 
lower emissions of PM, ozone and PM precur-
sors, and other hazardous pollutants, reducing 
the risks to human health from air pollu-
tion.97,126,127,128,129,130 However, the magnitude of 
air quality co-benefits depends on a number of 
factors. Areas with higher levels of air pollution 
have more potential for air quality co-benefits 
compared to areas where emission controls 
have been enacted and air pollution levels 
have been reduced.131 Different approaches 
to GHG mitigation yield different reductions, 
or in some cases, increases in ozone and PM 
precursors.132 For example, diesel vehicles emit 
less GHGs than gasoline-powered vehicles, but 

without correctly operating pollution-control 
devices, diesel vehicles emit more particles and 
ozone precursors and thus contribute more to 
air quality human health risks.133

In addition to co-benefits from sources that 
emit multiple pollutants, mitigating individual 
GHGs could yield co-benefits. For example, 
methane is both a GHG and a slowly reactive 
ozone precursor that contributes to global 
background surface ozone concentrations. 
Some monitoring stations in remote parts 
of the western United States have recorded 
rising ozone concentrations, resulting in part 
from increased global methane levels.90 The 
magnitude of the human health benefit of 
lowering ozone levels via methane mitigation 
is substantial and is similar in value to the 
climate change benefits.134,135 Additionally, PM 
influences climate on local to global scales by 
affecting the radiation balance of the Earth,23,136 
so controlling emissions of PM and its precur-
sors would not only yield direct human health 
benefits via reduced exposure but also avoid or 
minimize local meteorological conditions that 
lead to a buildup of pollutants.137
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Traceable Accounts
Process Description
Due to limited resources and requirements imposed by the Federal Advisory Committee Act, the 
decision was made that this chapter would be developed using an all-federal author team. The 
author team was selected based on expertise in climate change impacts on air quality; several of 
the chapter authors were authors of the “Air Quality Impacts” chapter of the U.S. Global Change 
Research Program’s (USGCRP) Climate and Health Assessment.3 This chapter was developed 
through technical discussions of relevant evidence and expert deliberation by the report authors 
via weekly teleconferences and email exchanges. The authors considered inputs and comments 
submitted by the public; the National Academies of Sciences, Engineering, and Medicine; and 
federal agencies. 

Key Message 1
Increasing Risks from Air Pollution

More than 100 million people in the United States live in communities where air pollution 
exceeds health-based air quality standards. Unless counteracting efforts to improve air 
quality are implemented, climate change will worsen existing air pollution levels (likely, high 
confidence). This worsened air pollution would increase the incidence of adverse respiratory 
and cardiovascular health effects, including premature death (high confidence). Increased air 
pollution would also have other environmental consequences, including reduced visibility and 
damage to agricultural crops and forests (likely, very high confidence).

Description of evidence base
It is well established that air pollutants pose a serious risk to human health and the environment.5,6 
Short- and long-term exposure to pollutants such as ozone or PM2.5 results in premature deaths,8 
hospital and emergency room visits, aggravated asthma,3,9 and shortness of breath.10 Numerous 
air quality modeling studies have assessed the potential impacts of a changing climate on future 
ozone and particulate matter levels in the United States.4,37,38,70,86 These studies examine simu-
lations conducted with a broad ensemble of global and regional climate models under various 
potential climate scenarios. For ozone, these model assessments consistently project higher future 
levels commensurate with warmer climates, independent of varying individual model assumptions. 
This model consensus strengthens confidence in the projected signal. Additionally, well-estab-
lished data analyses have shown a strong positive correlation between temperature and ozone 
at many locations in the United States.87,89 Although competing meteorological effects determine 
local ozone levels, temperature is often the single largest meteorological driver. This present-day 
signal also bolsters confidence in the conclusion that warmer climates will be associated with 
higher ozone. There are also modeling and observational studies that demonstrate that ozone 
precursor emissions from natural75 and human sources77 increase with temperature. In aggregate, 
the consistency in the ozone response to past and projected future climate across a large volume 
of analyses provides high confidence that ozone air pollution will likely be worsened in a warmer 
climate. For particulate matter, the model assessments exhibit greater variability in terms of 
future concentration differences projected to result from meteorological changes in a warmer 
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climate.3,4,43,70 The reduced certainty in the response of PM2.5 concentrations (particulate matter, 
or PM, less than 2.5 micrometers in diameter) to changing meteorological drivers is the result of 
the multiple pathways toward PM2.5 formation and the variable influence of meteorological factors 
on each of those different pathways.5 Most of these model assessments have not considered the 
impact of changes in PM from changes in wildfires or windblown dust because they are difficult 
to quantify. Studies that have included projections of future wildfire incidences have concluded 
that climate-driven increases in wildfire activity are likely, with wildfires becoming an increasingly 
important source of PM2.5

63,108,109 and degrading visibility.54 Finally, there is ample observational 
evidence that decreasing ozone and particulate precursor emissions would reduce pollut-
ant levels.28,29

Major uncertainties
Model simulations of future air quality indicate that climate warming generally increases 
ground-level ozone across the United States (see Figure 13.2), but results differ spatially and in 
the magnitude of the projected signal.90,138,139,140,141 Because meteorological influences on ozone 
formation can vary to some degree by location (for example, wind direction may be paramount in 
locations affected primarily by ozone transport), a few areas may experience lower ozone levels.4 
Future ozone levels over the United States will depend not only on the severity of the climate 
change impacts on meteorology favorable for ozone accumulation but also on any measures to 
reduce ozone precursor emissions, introducing further uncertainty. Even larger uncertainties 
exist with respect to the climate impacts on PM2.5, where the future concentrations will depend on 
changes in a suite of meteorological factors, which in some cases (for example, precipitation) are 
more difficult to quantify. 

Description of confidence and likelihood
There is high confidence that rising temperatures will likely increase future ozone levels in many 
parts of the United States in response to climate change. There is greater uncertainty that a 
warmer climate will increase future PM2.5 levels over the United States. Ultimately, the actual 
ozone and PM2.5 changes between the present and the future at any given location will depend 
on the local climate impacts on meteorology and pollutant emission controls in that region. 
There is very high confidence that reducing ozone precursor emissions and PM2.5 precursors and/
or direct emissions will likely lead to improved air quality in the future, thus mitigating adverse 
climate effects.

Key Message 2
Increasing Impacts of Wildfires

Wildfire smoke degrades air quality, increasing the health risks to tens of millions of people 
in the United States. More frequent and severe wildfires due to climate change would further 
diminish air quality, increase incidences of respiratory illness from exposure to wildfire smoke, 
impair visibility, and disrupt outdoor recreational activities (very likely, high confidence).
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Description of evidence base
Wildfire smoke worsens air quality through its direct emissions to the atmosphere as well as 
through chemical reactions of those pollutants with sunlight and other pollutants. Exposure 
to wildfire smoke increases the risk of exacerbating respiratory illnesses in tens of millions of 
people in vulnerable population groups across the United States.62 Several studies have indicated 
that climate change has already led to longer wildfire seasons,79 increased frequency of large 
wildfires,82,83 and increased area of forest burned.99 Additional studies project that climate change 
will cause wildfire frequency and burned area in North America to increase over the 21st centu-
ry.81,100,101,102,103,104,105,106 Increased emissions from wildfires may offset the benefits of large reductions 
in emissions of PM2.5 precursors.54,109 There is a broad and consistent evidence base leading to a 
high confidence conclusion that the increasing impacts of wildfire are very likely. Increases in 
wildfire smoke events due to climate change would reduce opportunities for outdoor recreational 
activities (Ch. 22: N. Great Plains, KM 3; Ch. 24: Northwest, KM 4). 

Major uncertainties
Humans affect fire activity in many ways, including increasing ignitions as well as conducting 
controlled burns and fire suppression activities.110,111 The frequency and severity of wildfire 
occurrence in the future will be largely determined by forest management practices and climate 
adaptation measures, which are very uncertain. Housing development practices and changes in 
the urban–forest interface are also important factors for future wildfire occurrence and for the 
extent to which associated smoke emissions impair air quality and result in adverse health effects. 
The composition of the pollutants contained in wildfire smoke and their chemical reactions are 
highly dependent on a variety of environmental factors, so projecting and quantifying the effects 
of wildfire smoke on specific pollutants can be particularly challenging. Exposure to wildfire 
smoke may also increase the risk of cardiovascular illness, but additional data are required to 
quantify this risk.62 More accurate forecasting of wildfire smoke events may mitigate health 
impacts and reduced opportunities for outdoor recreational activities through changes in timing 
of those activities.

Description of confidence and likelihood
There is high confidence that rising temperatures and earlier spring snowmelt will very likely result 
in lengthening the wildfire season in portions of the United States, leading to an increased fre-
quency of wildfires and associated smoke. There is very high confidence that increasing exposure 
to wildfire smoke, which contains particulate matter, will increase adverse health impacts. It is 
likely that smoke from wildfires will reduce visibility and disrupt outdoor recreational activities. 

Key Message 3
Increases in Airborne Allergen Exposure

The frequency and severity of allergic illnesses, including asthma and hay fever, are likely to 
increase as a result of a changing climate. Earlier spring arrival, warmer temperatures, changes 
in precipitation, and higher carbon dioxide concentrations can increase exposure to airborne 
pollen allergens. (Likely, High Confidence)
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Description of evidence base
Considerable evidence supports the conclusion that climate change and rising levels of CO2 affect 
key aspects of aeroallergen biology, including the production, temporal distribution, and potential 
allergenicity of aeroallergens.142,143,144,145,146 This evidence includes historical trends indicating that 
climate change has altered seasonal exposure times for allergenic pollen.113 These changes in expo-
sure times are associated with rising CO2 levels, higher temperatures, changes in precipitation 
(which can extend the start or duration of pollen release times), and the amount of pollen released, 
the allergenicity of the pollen, and the spatial distribution of that pollen.117,118,119,147 

Specific changes in weather patterns or extremes are also likely to contribute to the exacer-
bation of allergy symptoms. For example, thunderstorms can induce spikes in aeroallergen 
concentrations and increase the incidence and severity of asthma and other allergic disease.148,149 
However, the specific mechanism for intensification of weather and allergic disease is not 
entirely understood.

Overall, climate change and rising CO2 levels are likely to increase exposure to aeroallergens 
and contribute to the severity and prevalence of allergic disease, including asthma.115 There is 
consistent and compelling evidence that exposure to aeroallergens poses a significant health 
risk in regard to the occurrence of asthma, hay fever, sinusitis, conjunctivitis, hives, and anaphy-
laxis.150,151,152,153 Finally, there is evidence that synergies between aeroallergens and air pollution, 
especially particulate matter, may increase health risks for individuals who are simultaneously 
exposed.154,155,156 

Major uncertainties
While specific climate- and/or CO2-induced links to aeroallergen biology are evident, allergic 
diseases develop in response to complex and multiple interactions, including genetic and non-
genetic factors, a developing immune system, environmental exposures (such as ambient air 
pollution or weather conditions), and socioeconomic and demographic factors. Overall, the role 
of these factors in eliciting a health response has not been entirely elucidated. However, recent 
evidence suggests that climate change and aeroallergens are having a discernible impact on pub-
lic health.123,157

There are a number of areas where additional information is needed, including regional variation 
in climate and aeroallergen production; specific links between aeroallergens and related diseases, 
particularly asthma; the need for standardized approaches to determine exposure times and 
pollen concentration; and uncertainty regarding the role of CO2 on allergenicity.

Description of confidence and likelihood
The scientific literature shows that there is high confidence that changes in climate, including 
rising temperatures and altered precipitation patterns as well as rising levels of atmospheric 
CO2, will increase the concentration, allergenicity, season length, and spatial distribution of a 
number of aeroallergens. These changes in aeroallergen exposure are, in turn, likely to impact 
allergic disease. 
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Key Message 4
Co-Benefits of Greenhouse Gas Mitigation

Many emission sources of greenhouse gases also emit air pollutants that harm human health. 
Controlling these common emission sources would both mitigate climate change and have 
immediate benefits for air quality and human health. Because methane is both a greenhouse gas 
and an ozone precursor, reductions of methane emissions have the potential to simultaneously 
mitigate climate change and improve air quality. (Very Likely, Very High Confidence)

Description of evidence base
Decades of experience in air quality management have resulted in a detailed accounting of the 
largest emission sources of greenhouse gases (GHGs) and precursors of ozone and PM. The cost 
and effectiveness of emission control technologies for the largest emissions sources are well 
understood. By combining these emission and control technology data with energy system mod-
eling tools, the potential to achieve benefits to air quality while mitigating GHG emissions under a 
range of scenarios has been quantified in numerous studies.

Major uncertainties
A wide range of values have been reported for the magnitude of air quality co-benefits. Much of 
this variability can be attributed to differences in the mix of co-benefits included in the analysis 
and the time period under consideration. The largest sources of uncertainty are the cost paths of 
different energy technologies over time and the extent to which policy choices impact the evolu-
tion of these costs and the availability of different energy technologies. 

Description of confidence and likelihood
There is very high confidence that emissions of ozone and PM precursors could be reduced by 
reducing combustion sources of CO2. Reducing emissions of ozone and PM precursors would 
be very likely to reduce ozone and PM pollution, which would very likely result in fewer adverse 
health effects from air pollution. There is very high confidence that controlling methane emissions 
would also reduce ozone formation rates, which would also very likely lead to lower ozone levels.
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